案例:路段车速波动下的干道最优协调控制方法 - 交通管理 - 智慧交通网 ITS114.COM|中国智能交通领先的门户网站
  • 案例:路段车速波动下的干道最优协调控制方法

    2016-11-09 15:07:50 来源:信控沙龙 评论:
    分享到:

      一、引言

      在实际设计干道协调时经常以路段车队的离散性不大、路段车辆按某一固定的平均车速行驶、转入转出车辆对干道的车流无影响等为前提条件,但路段实际车辆受到驾驶员个人行为、公交车辆进出站台、沿线支路进出车辆干扰等因素影响,车队的形成受限,车辆按某一特定的速度行驶的可能性低,因此协调控制的实际绿波效果有限。

      如何根据实际交通流特性设计协调控制方案,特别是在车流受公交车辆停靠站、车流汇入汇出等影响导致车辆速度有一定波动的情况,使得协调控制绿波效果更佳一直是协调控制的重点和难点。

      二、传统协调控制模型存在的问题分析

      以传统协调控制模型优化三个路口为例(路段的速度不稳定)说明传统方法存在的问题,优化后的时距图如下图所示,从中可以看出:

      上行方向优化速度为最大速度值,从S1出发且运行速度小的车流将部分会在第二个路口遇红灯,通过第二个路口的车流也将在第三个路口遇红灯,速度最小值对应的带宽比为0;

      下行优化速度为最小速度值,从S3出发且运行速度大的车流将部分在第二个路口遇红灯,通过第二个路口的车流也将在第三个路口遇红灯,速度最大值对应的带宽比为0。

      从这个例子中可以看出,传统协调控制模型虽然能获得最大的绿波带宽,但其是在优化速度下才能达到该最大带宽值,当车流的速度运行在其它范围时,则大部分将会受阻遇红灯。此外,优化得到的速度只是理想化的速度,路段实际速度并不能保证均按该速度运行。

      三、路段车速波动下的干道最优协调控制方法

      为避免上述的情况,我们提出路段车速波动下的干道最优协调控制方法,该方法的关键思路如下:

      1.协调控制模型中以最小速度所取得的带宽值为目标函数;

      2.以保障最大车速下的车辆到达下个路口时能遇到绿灯为模型约束条件。

      通过上述两个关键的控制策略,能保障最小速度的车辆能最大化通过下游路口,同时最大速度的车辆也能通过下游相邻的路口,实现最多的车辆不停车通过路口。

      这种方法适用于路段速度因各种原因导致车速不稳定、具有一定波动性的情况,或者是协调的路段较长导致车流离散性大的情况。当最小车速与最大车速基本一致时,则模型方法回归到最原始的协调控制模型。

      四、算例分析

      设有三个路口的路段,其上行方向行车速度区间为[7.7,14.3](单位:m/s,下同),下行方向行车速度区间为[7.0,13.0],分别利用传统方法及本文方法进行协调设计,设计结果如下所示:

      从带宽的分配结果来看,本文方法能均衡不同速度下的通行带宽,提高路段的整体带宽值,使得更多的车辆能通过绿波带。

      利用VISSIM仿真软件模拟这三个路口在不同的方法下的运行效果,从三个路口的平均数值来看,本文方法较传统方法在排队长度、延误和停车次数等方面均有所下降,降幅在14%以上,可见本文方法更适用于速度波动下的情况。

      五、应用展望

      利用移动互联网技术可以获得路段上浮动车辆的运行速度,基于大数据技术可以获得路段的速度波动范围,根据速度的范围利用本文方法进一步精细化设计绿路,将获得更好的协调控制效果。

  • 关键字: 交通信号控制 干道最优协调控制
  •    责任编辑:逐梦女孩
  • 每周新闻精选

  • 关于我们
  • 联系我们
  • 广告赞助